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We consider the problem of percolation in a system having sites distributed 
at random, but in which only a fraction h of the physical overlaps form 
viable links. We convert this to a site problem on the covering lattice, and 
then show that in two dimensions h ~ 1/S ~ for h - 1, and h ~- 4 /S  ~ for 
h << 1, where S is proportional to the critical percolation radius in the 
original array. This result reproduces the T-113 behavior for log(conduc- 
tivity) expected of variable-range hopping and found by numerical methods. 
It also accounts for the region of transition to r-percolation as T--+ ~ .  
We make a prediction that in three dimensions, h = 1/8S 3 + const/S 6, 
but numerical confirmation is lacking for this case. While the argument is 
not exact, we have demonstrated a novel approach to random systems. 

KEY WORDS: Percolation; random lattice; hopping conduction; two 
and three dimensions; T -z/4 and T -z/3 laws; scaling. 

1. I N T R O D U C T I O N  

The p rob l em of  pe rco la t ion  on regular  latt ices has been b rought  to  an 
advanced  state. However ,  in electr ical  conduct ion ,  in teres t  centers on poin ts  
tha t  are r a n d o m l y  d i s t r ibu ted  in space, since such an a r ray  can be used to 
represent  an a m o r p h o u s  substance conduc t ing  th rough  a hopp ing  mechan-  
ism. A number  o f  approaches  have been adop ted  to calculate cri t ical  l imits  
for  pe rco la t ion  in such arrays.  These include mode l ing  by means  of  Cayley 
trees, <1~ analyses  o f  the stat ist ics o f  chain  length/2,3~ M o n t e  Car lo  studies 
o f  site overlap/4~ and  extension to r a n d o m  arrays  o f  a number  o f  empir ica l  
rules tha t  are  found  to hold  on regular  lattices. 

The Cayley tree a p p r o a c h  provides  valuable  guidance  because it p ro-  
vides a soluble model ,  a lbei t  a somewhat  unphys ica l  one. The results may  
be closer to the behav ior  on real  lat t ices than  one might  expect  f rom the 
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model, partly because clusters become treelike near the percolation limit <5~ 
(although this has been disputed (6~) and partly because the fraction of cyclic 
closures is only a few percent of the total number of bonds. (v~ Nevertheless, 
it must be said that the Cayley tree is unlikely to provide accurate percola- 
tion limits for two- and three-dimensional systems. The chain statistics 
method gives numerical results that are very sensitive to the details of the 
criterion adopted to describe percolation, (8~ so is also an unreliable guide. 

Empirical rules have been found to hold in a number of cases (see e.g. 
the review by Shante and Kirkpatrick(9~). The critical volume fraction 
(CVF) is useful for the site problem on regular lattices, but is not applicable 
to random systems, <~ apart from restricted cases. ~1~ The mean bond number 
at percolation/~c for the site problem approaches the limits of 4.5 (d = 2) 
and 2.8 (d = 3) as the bonding range increases above the lattice constant. 
Here, d is the number of dimensions. These invariants also hold for random 
arrays of spherical sites, but only if the sites are uniform in size. The bond 

problem on regular lattices yields Bc as an approximate invariant with the 
value d/(d - 1), and irregular lattices obtained by topological distortion of 
regular lattices ~zl'lm naturally give the same result. However, the bond 
problem on truly random arrays is not definable in any direct way, and/~c 
is certainly not constant for the case discussed in this paper. The Cayley 
tree result is Bc = z/(z  - 1), where z is the coordination number, and 
comparable formulas apply for various cactii5 la'14~ This expression corre- 
sponds to the most efficient interconnection between sites, because of the 
lack of closed loops, so it provides an absolute minimum value for all 
arrays. It contains no dimensional dependence, and in general it is a mediocre 
approximation to the correct results. 

We are finally brought to the Monte Carlo computation of the site 
problem as being the one method of attack in which a well-defined problem 
can be posed, a well-defined answer can be obtained, and the model bears 
some reasonable resemblance to amorphous materials. In practice, however, 
we do not expect every physical overlap of sites to lead to a conductive link. 
The AHL interaction, (ls~ or some similar formulation, places energy restric- 
tions as well as spatial restrictions upon the formation of links. This has 
been incorporated in the Monte Carlo approach by dealing with overlap 
in a (d + 1)-dimensional space having energy as the additional coordinate. (z6) 
Unfortunately, the problem becomes rather less manageable numerically, 
and these authors were forced to make comparisons by using their exact 
results for spherical sites m and applying them to the nonspherical sites 
in (d + 1) dimensions. This procedure is known to give misleading answers 
(Table 3 of Ref. 10). 

An alternative and somewhat simpler approach is to ignore the explicit 
energy dependence, but to assume that some fraction 1 - h of the links 
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that would result from spatial overlap considerations alone are rendered 
inoperative because they are inhibited by the energetics or for other reasons, 
such as misalignment of wave functions. When this fraction of the links is 
chosen at random we have the probabilist ie bond model, also evaluated by 
Seager and Pike. These authors found that as the retained fraction h was 
reduced, and the critical radius correspondingly increased to hold the system 
at the percolation limit, the mean bond number/~c fell. This was contrary 
to expectation, because the procedure of increasing the critical radius to a 
value much greater than the average site spacing is similar to the situation 
on regular lattices in which bonding between second nearest neighbors, 
third nearest neighbors, etc., leads to the invariant /~c mentioned above. 
The essential difference between the two procedures seems to lie in the fact 
that the sites are thinned out in the regular lattice case, while the bonds are 
thinned out here. 

Since this probabilistic bond model can be interpreted rather directly 
in terms of an energy restriction, it is desirable to understand w h y / ~  varies 
with h in the way it does, and we offer a partial explanation, which accounts 
for the published numerical results for d = 2. The more interesting case 
of d = 3 does not seem to have been done numerically, because of the sheer 
size of the computational work, but we suggest what the result might be. 

2. T H E O R Y  

2.1. The Site Problem in the Covering Lattice 

We consider a random array of circular sites on a plane. There are N~ 
circles per unit area, their radius is R (this is the inclusive figure or IF radius), 
and any amount of overlap is permitted (no hard core). A mean spacing r, 
is defined by 

rrN~r~2= 1 (1) 

A link is formed whenever one circle overlaps the center of another, 
and a link corresponds to a bond being attached to each site. The number 
of bonds on a site is B, which is a Poisson variate with mean value/~ given 
by 

= rrR2N~ = 4(R/2r~) 2 (2) 

If  R is steadily increased from zero, then eventually infinitely long 
connected paths occur at a critical radius Rc. The corresponding critical 
bond number is/~c. Now the radius is further increased, so that /~ exceeds 
this number, and the system is well beyond the percolation limit. Then a 
fraction 1 - h of the bonds are removed by a random selection procedure, 
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Table I. Parameters  of  the  Th inned  Latt ice Calculat ions ~ 

h S Bc Bc~ ho~o 

1.0 1.058 + 0.026 4.48 7.06 0.998 
0.5 1.28 3.28 4.81 0.514 
0.25 1.585 2.51 3.46 0.253 

h is the fraction of bonds retained after increase of bonding radius; 
S is the reduced OLF radius S = Rc(h)/2r~ (data from Pike and 
Seager(~); Bc is the mean bond number (data from Pike and 
Seager(4~); /~cc is the mean bond number in the covering lattice 
[Eq. (5)]; hollo is the fraction calculated using Eq. (17) and the given 
values of S. 

unti l  the system is reduced once more  to the po in t  of  percola t ion.  I t  is found 
tha t  the now augmented  Re(h) is accompan ied  by a reduced /~o(h). The  
avai lable  numerica l  results o f  Pike and Seager (4~ are  reproduced  in Table  I 
for reference.  

I t  is not  possible  to const ruct  a theory  ab ini t io  to account  for the more  

effective in terconnect ion  in the new ar ray  f rom which bonds  have been 
th inned,  and  we proceed by a scaling argument .  We  recall  tha t  a b o n d  
p rob lem on a direct  la t t ice can be conver ted  into a site p rob lem on the 
cor responding  covering lattice, aT~ The sites of  the covering lat t ice are located 
at  the centers of  the l inks of  the direct  latt ice,  and  l inks in the covering 
lat t ice are made  between all sites for which the cor responding  bonds  in the 
direct  lat t ice have a c o m m o n  vertex. I t  is clear f rom Fig. 1 tha t  a l ink in the 
direct  lat t ice tha t  connects two sites having i a n d j  bonds  on them cor responds  
to a site in the covering lat t ice that  has i + j - 2 bonds.  

Fig. 1. Construction of the covering 
lattice. The direct lattice sites are circles, 
the covering lattice sites are squares. The 
labeled direct sites have i = 3 and j = 4 
bonds, so the covering lattice site be- 
tween them has 3 + 4 - 2 = 5 bonds. 
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The onset of bond percolation in the direct lattice is accompanied by 
the onset of site percolation in the covering lattice, and the latter is more 
easily handled because all sites contribute in the normal way to percolation 
in this array: The fraction 1 - h of links that have been suppressed in the 
direct lattice do not enter into the transformation. Now we make the hypoth- 
esis that the sites in the covering lattice are randomly placed, circular, 
uncorrelated, and all have the same effective radius. Then the covering lattice 
will percolate when its mean bond number/~cc equals Be(l). We use the 
subscript C to denote quantities in the covering lattice. In the thinned direct 
lattice, the mean bond number is 

Bc(x) = 4hS 2 (3a) 

where 

Rc(h)/2rs = S (3b) 

If  we substitute this value for both i and j, we obtain 

hS ~ = [Bc(1) + 2]/8 = 0.81 

This suggests that hS = is a constant. It is obvious from the data that 
this does not hold in the range 1 ~< h ~< 0.25. We can trace the failure of 
this procedure to at least two defects in the hypothesis. The distribution of 
the bonds on the sites of the covering lattice is not in fact of Poisson form. 
If the fraction of sites in the direct lattice having i bonds is written q~, then 
the probability of finding a link that joins sites having i and j bonds is 
proportional to the term in q~qj contained in the pair probability 

(q0 + q, + "'" + q, + ...)2 (4) 

where 

.l• t I  

q, = ~.. e x p ( - B )  

The resulting probabilities qc, that sites have n bonds in the covering 
lattice are readily calculated, and deviate markedly from the Poisson dis- 
tribution. The corresponding mean bond numbers/~cc have also been cal- 
culated, using 

Bcc = ~ nqc~ (5) 

and these are displayed in Table I. They are by no means constant. 
The second defect in our original set of hypotheses is that there will in 

fact be correlation between sites in the covering lattice, because a direct 
lattice site having i bonds, where i is large, gives rise to a group of i inter- 
linked sites in the covering lattice, having at least i - 1 bonds each. Whether 
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Fig. 2. Bond length l in the covering lattice related to the parameters rl, r2, and 0 in 
the direct lattice. 

this correlation leads to a preferential directivity of bonds, i.e., effectively 
noncircular sites, is a problem we have not investigated. Nor have we 
assessed whether the covering lattice sites will have spatial correlations in 
addition to bond number correlations. 

We now turn to a calculation of the length distribution of links in the 
covering lattice. The length can be easily evaluated from the cosine formula, 
as shown in Fig. 2: 

(2l) 2 = rl 2 + r2 2 + 2rlr2 cos 0 

where l is the new link length, rl and r2 are the link lengths in the direct 
lattice, and 0 is the polar angle. These quantities are distributed randomly 
with probability distributions 

p(rz 2) d(r~ 2) = d(r12)/R~ 2, 

p(r22) d(r22) = d(r22)/R~ 2, 

p(O) dO = dO/2~r 

= �89 sin 0 dO 

rl < Rc 

r2 < Rc 

(d = 2) 

(d = 3) 

The maximum link length in the covering lattice is of course the critical 
radius in this system, so we have 

Rc = Rc~ (6) 

The two-dimensional calculation leads to a cumbersome quadrature, so the 
integral distribution p(~2) has been evaluated by direct numerical integra- 
tion of the probability distributions. Here, A = 2l/Rc. We have confirmed 
our numerical procedure by evaluating the three-dimensional case in the 
same way, and checking it against the simple analytic result for 3d. Details 
of the analysis are given in Appendix A, and the results are plotted in Fig. 3. 
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Fig. 3. Integral distribution of  A ~ as a function of  A z, where A is the reduced bond length. 
The curves are for a covering lattice o f  a r a n d o m  direct lattice in two and three dimen-  
s ions,  whi le  the straight l ine (3) gives the distribution corresponding to a set o f  circles 
or spheres all having the same radius. 

It is clear that the same relative distribution holds, whatever the value of Re. 
The natural assumption to make is that this corresponds to the unique site 
radius in the covering lattice that is scaled relative to Re, and is given by 
Eq. (6). However, we show in Fig. 3 that the bond length distribution corre- 
sponding to sites of uniform radius differs considerably from the distribu- 
tions we have derived. It follows that if the conversion to a site problem 
on the covering lattice is in any sense meaningful, then we must be dealing 
with sites of varying size. The concept of the inclusive figure is now in- 
applicable, and we have to work with the overlapping figure (OLF) radii 
Xc, having a maximum value 

Xcc = �89 (7) 

This conclusion automatically leads to a bond distribution of non-Poisson 
form. Whether this failure of the Poisson distribution is consistent with the 
failure associated with Eq. (4) remains to be established. A distribution of 
the radii Xc that is scaled relative to R~ would give rise to a constant value 
of the mean bond number/~cc, and in principle it can be calculated from the 
probability density p(;~). The computation is not straightforward, and it is 
discussed in Appendix B. 
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2.2. Scaling and the Constan t -Vo lume-Frac t ion  Result 

The regularity of the link length distribution p(.~2) d,~2 in the covering 
lattice suggests strongly that there should be some scaling relations between 
the relevant quantities in the covering lattice. The site density in the covering 
lattice is the same as the link density p(h) in the direct lattice: 

Ncs - p(h) = 2hNsS 2 (8) 

and this can be used to define the mean site radius rcs in the covering lattice: 

~rNcsr~ = 1 (9) 

If  the sites in the covering lattice were uncorrelated, then a straightforward 
extension of an earlier calculation <1~ shows that at percolation one would 
have 

Bcc = k(Xcc/rc~) z (10) 

in which Xcc is the overlapping figure (OLF) critical radius, and k is a 
number that can be calculated if the distribution of OLF radii is known, 
Since Xcc = �89162 we would obtain by substitution 

Bc~ = 2khS* (no correlation) (11) 

This would suggest that hS ~ is a constant. However, we already know from 
the earlier discussion that there is correlation, so that k may not be a con- 
stant, and we also know that/1co varies. In fact, hS ~ is not a constant for 
the values given in Table I. It shows a 19~ variation, while the uncertainty 
in S 4 is about 14%. 

However, we can obtain the same scaling result in a way that does not 
require the hypothesis that bonding be uncorrelated. We merely have to 
postulate that percolation occurs in the covering lattice when the mean site 
separation falls below some fixed fraction f of the maximum separation at 
percolation. Thus 

rco <<. 2fXcc (12) 

and on substituting the previous results (3b) and (7)-(9), we get 

1 <<. 8 f2hS ~ (13) 

If  the sites can be regarded as circular but with variable radii, then their 
mean area at percolation Vc~ is some weighted fraction co of the maximum 
area. Thus 

Fc~ = ~rXgcoJ (14) 

The critical area fraction (CVF) is given by 

e x p ( - N c s V c r  = 1 - CVF (15) 
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The CVF seems to be an invariant for overlapping disks with size distribu- 
tions, (1~ and therefore N c Y c c  should also be invariant. Hence we expect 

- ln (1  - CVF) = 7rwNcsXgo = ~o(Xc~/rc~) 2 (16) 

and this is the same as Eq. (13), with o~/4f 2 = - ln (1  - CVF). Pursuing this 
argument, we know that CVF _~ 0.68 in two dimensions, and thus it follows 
from the values h = 1 and S = 1.058 given in Table I that ~o = 0.45. 

We have in Eq. (13) a strong suggestion that h S  ~ should be constant. 
However, this should not hold at very small h, because when the bond 
density is dilute, the bonding becomes very efficient. The most efficient 
process known is percolation on Cayley trees, where B~ = z / ( z  - 1), and z 
is the coordination number of  the site. We expect the thinned direct lattice 
to approach the value B~ = 1 (z = o~) because (1) finite clusters grow 
treelike (ramified) as they approach the percolation threshold from 
below (5'1s) on regular lattices, (2) the connected paths just above percola- 
tion on regular lattices show only a few percent of  bonds devoted to cyclic 
closures, (19) (3) at least one system modeling random sites shows the same 
lack of cyclic bonds, (7) and (4) the random system under study in this paper 
does have z = oe. Hence h S  4 does not extrapolate to the correct limit. In 
fact, to be consistent with the tree limit, we expect 

lira 4 h S  2 = 1 
h -* O  

which has the same form as Eq. (3). Hence we put forward the combination 

1 0.97 
h = ~ + ~ (17) 

The coefficient of S -~ is found by fitting this equation at x = 1, and it has 
the values 1.01 and 0.97 obtained from assemblages of  1000 and 4000 points, 
respectively. In Table I we give the fit to Eq. (17), and we see that it differs 
from the known h for 4000-point samples by about 3~o, well inside the 
uncertainty in S 4. I f  this approach is correct, then comparison of Eq. (7) 
and (13) yields the value 8 f z =  (0.97) -1, and substitution into Eq. (16) 
gives o~ = 0.58, ignoring the term 1 / 4 S L  The value of ~o becomes smaller, 
and no longer a true constant, if  this term is included. 

We can now see that equivalent arguments for a three-dimensional 
problem would lead to an equation of the form 

1 c 
h = 8-~  + S~ 08)  

where again the term in S - s  represents the dilute limit. The value S --- 0.7048 
at h = 1 gives a value for the constant of  c = 0.0788, while it comes to 0.122 
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if the first term is omitted. Since the first term is already 3670 of the total 
at h - -  1, it ought to be quite straightforward to establish by numerical 
methods whether it does in fact have to be taken into consideration, whereas 
we have seen that the two-dimensional data are not decisive. 

3. D I S C U S S I O N  

We have suggested that it is possible to understand the behavior of the 
percolation threshold in random two-dimensional arrays in which some 
random bond deletion occurs in terms of a scaling type of behavior, in 
which the leading result is hS ~ ~_ const. While the available data match 
this result, with minor adjustments, we are obliged to point out that there 
are a number of reasons why this approach needs to be treated cautiously 
at present. The first is that the numerical data (~ on percolation limits were 
obtained by arbitrarily picking the median value of the critical radius Rc 
for a relatively small set of trials at each value of x. There is thus some 
conceptual uncertainty as to whether the median is indeed the proper value 
to use, as well as the more trivial uncertainty associated with its rather wide 
confidence limits. 

The second objection is a more technical one. The relation between the 
bond length distribution p(A 2) and the presumed normalized distribution of 
radii g(E) is developed in Appendix B. It is shown there that the value of 
o~ is 0.32. Thus it is somewhat smaller than the values predicted by the 
scaling assumptions made here. However, we have not been able to construct 
a g(E) that generates our known p(;~2). While the discrepancy seems to be 
of a qualitative nature, it may be merely a question of quantitative adjustment 
of trial distributions. 

The final problem is the matter of correlation. By going to the covering 
lattice, we have converted the thinned bond problem to what ought to be 
the simpler site problem, rather than choosing the renormalization group 
method/2~ We have not, however, made any allowance for the existence of 
close groups of sites, all having large bond numbers, which probably occur 
in the covering lattice. It may well be that this leads to relatively strong 
perturbation of our simple theory, and so may account for the discrepancies 
mentioned in the previous paragraph. 

It is pertinent to ask how the present calculation matches the variable- 
range hopping formulation of amorphous conduction. (21~ If the jump 
probability between two sites is proportional to e x p ( -  ~:), where 

= 2e~r + A E / k T  (19) 

where ~ is a measure of the rate of decay of the site wave functions and 
2xE is a measure of the energy difference, then the percolation approach 
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asserts that for critical percolation, there is some maximum value ~:c, and 
all less probable jumps can be ignored. This assumption leads directly to 
the same temperature dependence as found for variable-range hopping (15,16,22~ 
for the temperature range over which the energy term is important (z- 
percolation region). We note that at a range r, the fraction y of physically 
overlapping bonds that may tunnel is given by 

y ~ ( k r / w ) ( ~ c  - 2~r )  

where W is the half-width of the impurity distribution, which is assumed to 
have a more or less constant density of states near the Fermi level. We show 
in Appendix C that this has a mean value .f given by 

y = k T r  k T r  < 1 
(20) 

= I - (W/kT~c)  + (W/kT f , )2 /3 ,  k T d W  > 1 

In the present calculation, we are simulating the effect of the energy 
term by saying that only a fraction h of the bonds due to physical overlap 
actually contributes to the conduction process. If we ignore the detailed 
change of y with radius, and boldly equate y with h, then we have a con- 
nection between S, given by Eq. (17), and the temperature from Eq. (20). 
Since the conductivity a is given by 

oc exp(-fc) oc exp(-2,r ,S)  (21) 

this amounts to an implicit relation between conductivity and temperature. 
In the low-temperature limit (S large) we have the approximate relation 

2c, rsSkT~c/3 W ~_ 1/4S 2 (22) 

which immediately yields the relation ~ ~ exp(-const • T-1/3), exactly as 
found by the variable-range hopping technique. It is in this temperature 
range that the replacement of y by h will be most satisfactory, because here 
the formation of conducting links is strongly forbidden on energetic grounds, 
with the radius effect playing a minor additional role. The complete tempera- 
ture dependence is plotted in Fig. 4. The corresponding three-dimensional 
calculation using Eq. (18) leads to the familiar T-1/4 law for the temperature 
dependence of conductivity. Clearly the form of our "correction" term in 
Eq. (17) is all important. 

We have shown that by means of scaling arguments it is possible to 
account for the numerical results of Pike and Seager ~4~ on the percolation 
limit when some bonds chosen at random are rendered ineffective. These 
arguments apply at relatively small suppressions (h ~> 0.25), and are over- 
taken in the low-temperature limit (strong inhibition) by the Cayley-tree 
result, which in fact coincides with the criterion of constant link density 
discussed earlier. We have noted that the scaling argument is not exact. 
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Fig. 4. Logar i thmic  plot  o f  conductivi ty cr against  T -  i/a for a two-dimensional  r andom 
lattice, where In cr = -2c~r~S. The arrow marks  the change f rom intermediate  behavior  
to the variable-range hopping  regime (kTfc/W = 1). The dashed curve gives the asymp- 
totic limit of Eq. (22). At the left we go from the intermediate region to r-percolation as 
T--+ oo. 

Despite these difficulties, we think that we have investigated a possible 
alternative route, which may lead to further understanding of the problem 
of percolation on random lattices, and we have made quantitative predictions 
for the three-dimensional problem, which now need to be tested by numerical 
methods. 

APPENDIX A. CALCULATION OF THE BOND LENGTH 
DISTRIBUTIONS IN THE COVERING LATTICE 

The calculation of the distribution of bond lengths described by Fig. 2 
is most readily carried out by using reduced variables x = rl /Rc,  y = r2/Rc, 
and z = cos 0. We give an outline of the calculation for the three-dimen- 
sional case, which leads to a simple analytic result. We start from the 
normalized distribution functions for x, y, and z: 

f ( x )  dx = 2x dx, g(y)  dy = 2y dy 

p(O) dO = �89 sin 0 dO, h(z) dz = p(O)[dO/dz[ dz = �89 
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The normalized link length 2  ̀(0 < I < 2) is given by 

)t2 = x 2 + y2 + 2xyz 

and s tandard methods give the distribution function of  this variable as 

p(2`2) = f ff dx dy dz f(x)g(y)h(z) 8[q(z)] 

where 

q(z )=  2, 2 -  x 2 -  y z -  2xyz 

N o w  if z0 is the value of  z that  makes q(z) = 0, then we can perform 
.the integration over z to find 

p(h 2) = f f dx dy f(x)g(y)h(zo)/lq'(zo)l 

=_flax+ 
The region of  integration is given by 

- 1  ~< z~< 1, 2 `2=x  2 + 2xy + y2 

and corresponds to the shaded region in Fig. 5. The area is easily evaluated 
and gives directly 

p(2`2) = 22` - 32`2/2 (0 < 2  ̀ < 1) 

= (2 - 2`)2/2 (1 < 2  ̀< 2) 

and the integral distribution is 

p(2`2) = 42`a/3 _ 32`4/4 (0 < 2  ̀ < 1) 

= - 1 / 3  + 22` = - 42`3/3 + 2`4/4 (I < 2  ̀ < 2) 

This distribution is plotted in Fig. 3. 

I 
o 

N 

1 .~.\% 
Fig. 5. Regions of integration for evaluating the integrals in Appendix A. The diagrams 

correspond to A < 1 and A > 1. 
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The corresponding calculation in two dimensions leads to 

4 ( (  dx dy xy  p(A 2) 
7r J J [4x2y2 _ (x 2 + y2 _ Aa)2]lj2 

with the same region of  integration. The substitutions 

= ( x  + y ) / ~ ,  n = ( y  - x)/;~ 

enable us to integrate over one variable, leading to 

_ _ P(A2) = t2 (1 d~ 2(1 _2 ~2)112 {~(~2 1)1i2 _ ln[~ + (~2 1)~t21} 
1 

~rj o 

) + (1 - ~72)z/2 ln[~ + (~2 _ 1)1/2] 

and also 

p(a 2) = ~ r/2'~ d~ (~2(~:2 1 /32)1,2 
7r ,11 - 1)z, 2 [/3(1 -- + sin -1/3] 

(~2 _ 1)112 sin-1/3} + 

/ 3=  2 / a -  ~:, 1 ~< 2~ ~< 2 

We have not  found a method of  evaluating these integrals directly, 
though it is straightforward to obtain the limiting values 

limp(A 2) = 1 - 2A/rr 
~ 0  

lim p(A 2) = 2~/2 11/2(2 - A)3/2/3~ ~_ 4(2 - ~)3/2/37r 

We have evaluated p(,~2) by a numerical method,  directly from the 
probabil i ty distribution func t ionsf (x) ,  g(y), and p(O). The three-dimensional 
result agrees with the analytic solution, and so we are confident that  the 
two-dimensional  result shown in Fig. 3 is also correct. 

A P P E N D I X  B. RELATION BETWEEN B O N D  LENGTH 
D I S T R I B U T I O N ,  SITE R A D I U S  D IRECTION,  
A N D  M E A N  AREA IN T W O  D I M E N S I O N S  

In the body of the paper, we have considered the distribution of bond 
lengths p(A 2) in the covering lattice derived from a direct lattice that has a 
positionally random distribution of sites in either two or three dimensions. 
Our arguments are then based on the assumption that the site problem in 
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the covering lattice can be treated, at least to a first approximation, as if 
each site could be assigned an effective radius EXc~, where Xc~ is the maxi- 
mum physical radius of the site. The quantity EXcc is the radius of  the 
overlapping figure (OLF). (4'1~ The parameter  E is a random variable, 
0 ~< E ~< 1, and it has a normalized probability distribution function g(E). 
It  does not seem to be easy to derive g(E) from p(h2), but the converse is 
relatively simple using an extension of an earlier method. (1~ The number 
of links that have lengths lying in an interval Xc~ dE is 

7, /.X-E o 

O < h < l  

(B1) 

and 

~d(s) + s3g'(s) = - 2So2ff(s)fY'(s) (B6) 

2J{"(s) + sJd"(s) = - 2So2[N'2(s) + ~(s)fY"(s)] (B7) 

where ~ ( s )  and f~(s) are the Laplace transforms, and the prime indicates 
differentiation with respect to the transform variable s. Using the fact that 
k(a) is finite and k'(a) = 0 as ~ -+ 0% we obtain the following limits: 

k ( 0 + )  = SJ~r S ( 0 )  = -2Sc2~r 
(B8) 

at '(0) = - s j v r  + ~(0)~r 

f dm = (Xcc/rcs) 2 d)t2L dEo g(Eo) dE1 g(E1), 1 < R < 2 (B2) 
A-1 -E o 

The right-hand sides of  this pair of  equations are the unnormalized forms 
of p(A2). At first sight, it seems attractive to attack these equations by a 
Laplace transform method, because if we write 

k(~) = dm/dA 2 

then we obtain 

dk/dA = -(Xcc/rcs) 2 g(x)g(a - x)dx,  0 < ,~ < 1 (B3) 

dk/clA = - (Xcdrcs)  2 g(x)g(a - x)dx,  1 < a < 2 (B4) 
- 1  

In fact, the definition that g(E) = 0 outside the range 0 < E < 1 permits 
us to write these equations in the form of a convolution (B3) for all values 
of  h. 

We use the abbreviation (Xodrcs) = Sc, and then find that 

~ ( s )  - ~ (0  + )  = - s o  2 ~r (Bs )  
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Using the general property that for a normalized distribution function 
such as g(E) that N(0) = 1 and (E~)g = (-1)~(d~N/ds~)~=o, we can write 
Eqs  (BS) in the form 

k (0+)  = Sc 2, a4{'(0) = 2Sc2(E)g 
(Bg) 

- • ' ( 0 )  = Sc2((E>g 2 + (E2)~) 

Now the weighted area fraction ~o used in the text is given by 

o~ = (E2)g = - ~d'(O)/Sc 2 - [a~f(O)/2Sc2] 2 (B10) 

It  also follows that 

- sag ' ( s ) /Se  2 + 1 = fg2(s) (BI! )  

In principle, we could put in trial solutions for g(E) and use Eq. (B11) 
to derive k(,~), which could then be compared directly with the computed 
bond distribution discussed in Appendix A. However, the finite range of E 
forces the Laplace transforms to be quite complicated and makes the inversion 
of Of(s) impracticable. 

The next method of attack is to use the convolution integral (B3) 
directly, performing the integration directly. Since it follows from the 
results of Appendix A that g(E) becomes infinite at both ends of its range, 
some care is required to remove these singularities before numerical evaluation. 
We show in Fig. 6 the results of using the form 

g(E) = A/EI~Z; k(Z)/Sc 2 = (1 - rrA2Z), k < 1; A = 1/2; oJ = 0.2 

which clearly underestimates the fraction of circles having large radii and 
so underestimates co. It  does give a linear dependence of k(~,) upon ~ for 
I < 1, though the slope is wrong. This particular form can be handled 
wholly analytically. 

We also show the result obtained using 

g(E) = A l E  ~/2 + B/(1 - E)  ~/4 + C, k(a)/Sc 2 = (1 - rrA2a), a<< 1 

A = V/-}/Tr, B = 1/[rY4P(�88 = 0.613, C = -0 .718  

2A + (4/3)B + C = 1, ~o = 0.281 

Here, the value of A has been chosen to force the correct slope at A = 0, 
and the value of B to obtain the correct limiting form at A = 2, and C 
follows from the normalization of g(E). This is a much better fit, but still 
underestimates the proportion of circles having large radii. It  is obviously 
possible to make more elaborate choices for g(E) to improve the fit, but 
this seems to be an exercise of limited value. 
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Fig. 6. Two-dimensional case. Plot of the distribution function p(h 2) as a function of )t 
in the covering lattice. Case (a), derived from g(E) = A/E  it2. Case (b), derived from 
g(E) = A /E l I2+ B / ( 1 -  E)II~+ C. Case (c), given by numerical integration as 
outlined in Appendix A. In two dimensions only, p(A2) = (dm/dA2)/SoL 

We est imate ~o directly by the following stratagem. The  integral 
distr ibution P()t 2) is given to within abou t  _+ 0.02 by 

p(A2) ~ ~2 _ 4A3/3~. 0 < )~ < 1 

_ 1 - (32/15~)(2 - A)5'2[1 - 5(2 - Z)/14], A < 1 < 2 

and  dP/dA 2 = 1 at  A = 0. Now,  by definition, 

Bee = dm - M(Xec/ro~)  2 
=0 

where the mult ipl ier  M is formal ly  found by integrat ion of  the h-dependent  
parts  o f  the r ight-hand sides of  (B1) and (B2) over  their respective ranges, 
and summing.  This quant i ty  lies in the range 0 < M ~< 4, with the upper  
l imit  corresponding to the case o f  un i form circles [g(E) = 3(1 - E)]. The  
normal ized bond  distr ibution is thus (dm/dhZ) /MSc  2 -- dP/dAL Using (B9), 
we have that  1 / M  = dP/dh 2. Hence in the present  case, M = 1. N o w  the 
required t ransforms are 

fo = da - - � 8 9  

Yo (am MS~ fo aP ~ ( 0 )  = e-a'~ d;~ = j - d - ~  M--fie z f f  dZ M S c  2 
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so that (B10) becomes 

oJ = �89 - ~lM2[(~[Jo (dP/dZ2) d)t] 2 

Now using the appropriate algebraic forms of  p(12) to evaluate [-..], we 
obtain ~o = 0.32. 

A P P E N D I X  C. F R A C T I O N  OF P H Y S I C A L  L INKS A V A I L A B L E  
FOR H O P P I N G  

We are working in the direct lattice with sites all having the same 
radius. We can work with a representative site having an inclusive figure 
(IF) radius R~ at the onset of percolation. The mean number of physical 
links is simply 7rRc2ns = 4(Rc/2r,) 2. Not all of these links can lead to con- 
duction, because the probability of hopping is 

e x p ( -  ~:) = e x p ( -  2ar - AE/kT)  

and in the percolation approximation, all links with ~: < ~:c conduct, while 
links with ~: > ~ cannot. Only links with small energy jumps &E such that 

AE/kT  < AEm~x/kT = ~c - 2c~r 

are involved in conduction, and this limit varies with radius. Between radii 
r and r + dr we have 2~rrn~ dr sites that overlap with the representative site. 
We calculate the fraction y of such links that can conduct, assuming a simple 
model of an impurity band extending between + W from the Fermi level 
and having a constant density of states N = nd2W. Then there are two 
possible conditions: 

y =  1, r < ra 

y = 2N &Em.x/n~ = (kT/W)(~o - 2~r), r > r~ 

where 

~o - W / k T  = 2ar~ 

~c = 2aRc 

At high temperature, kT---~ 0% r~ -+ Rc and the mean value o f y  becomes 
y = 1. All physical overlaps form conductive links, and we have the 
r-percolation limit. At lower temperatures, we have 

~ =  [fora2rrrnsdr + ~ C ( k T / W ) ( ' ~ -  2e~r)2~rrn~dr] 

= 1 - ( W / k T ~ )  + (W/kT~c)2/3 for k T ~ d W  > 1 
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A t  still lower tempera tures ,  the pa rame te r  r~ becomes negative. This implies  
tha t  some physical  l inks do not  conduc t  even at  small  separat ions.  Unde r  

these condi t ions ,  the l imit  r~ mus t  be changed  to zero in the integrals ,  with 
the  result  

y = kTEc/3 W for  kT~c /W < 1 

The pos i t ion  at  which this result  takes effect is m a r k e d  with an a r row 
in Fig. 4. I t  is clear  tha t  v i r tual ly  the whole  of  the t empera tu re  var ia t ion  o f  
conduc t iv i ty  comes f rom this region.  
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